\qquad
4-2 Sines, Cosines, and Tangents
Date \qquad
Goal: Estimate the sine and cosine of any number by referring to their definitions.

Warm Up: Give the exact values of the sine, cosine and tangent of θ
Questions for each diagram.

Unit Circle and Trigonometric Ratios

The unit circle is the circle with the center at \qquad and with a radius of \qquad .

If the point starts at $(1,0)$, then the segment from the origin has an angle measure of \qquad As the point rotates $\left(R_{\theta}\right)$ about the center, the segment makes a larger angle until it reaches
\qquad and repeats.

Definition of Cosine and Sine

For all real numbers $\theta,(\cos \theta, \sin \theta)$ is the image of the point $(1,0)$ under a rotation of θ about the origin. That is, $(\cos \theta, \sin \theta)=R_{\theta}(1,0)$.

Questions

Example 1: Evaluate $\cos \pi$ and $\sin \pi$.
On the unit circle $(\cos \pi, \sin \pi)=R_{\pi}\left(_, \quad-\quad\right)$. Use a calculator to check.

Now, let's add the quarters to the unit circle, the corresponding points and signs of each quadrant.

Definition of Tangent
For all real numbers θ, provided $\cos \theta \neq 0, \tan \theta=\frac{\sin \theta}{\cos \theta}$. When $\cos \theta=0$, then $\tan \theta$ is undefined.

In other words, $\tan \theta$ is the \qquad of the segment to the point. Not to be confused with \qquad .

Example 2: Give exact values of each.

1. a. $\sin 270^{\circ}$ \qquad 2. a. $\sin -3 \pi$ \qquad 3. a. $\sin 0$ \qquad
b. $\cos 270^{\circ}$ \qquad b. $\quad \cos -3 \pi$ \qquad b. $\cos 0$ \qquad
c. $\tan 270^{\circ}$ \qquad c. $\tan -3 \pi$ \qquad c. $\tan 0$ \qquad
Activity
2. Label point $A(1,0)$.
3. Use a protractor to rotate A under $R_{50^{\circ}}$ and label this
point P_{1}.
4. Using the grid, estimate the coordinates of P_{1} to find

Questions

4. Now estimate using your calculator $\cos 50^{\circ} \approx$ \qquad $\sin 50^{\circ} \approx$ \qquad , $\tan 50^{\circ} \approx$ \qquad
5. Use a protractor to rotate A under $R_{155^{\circ}}$ and label this point P_{2}.
6. Using the grid, estimate the coordinates of P_{1} to find $\cos 155^{\circ} \approx$ \qquad $\sin 155^{\circ} \approx$ \qquad , $\tan 155^{\circ} \approx$ \qquad
7. Now estimate using your calculator $\cos 155^{\circ} \approx$ \qquad , $\sin 155^{\circ} \approx$ \qquad $\tan 155^{\circ} \approx$ \qquad

[^0]
[^0]: Summary:

